\qquad
FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION, NOVEMBER 2021
B.C.A.

BCA 1C 02—DISCRETE MATHEMATICS
(2021 Admissions)

Time : Two Hours

Maximum : 60 Marks

Section A (Short Answer Type Questions)

Answer at least eight questions.
Each question carries 3 marks.
All questions can be attended.
Overall Ceiling 24.

1. Define contradiction.
2. Define dual of proposition. Write the dual of $(P \wedge Q) \vee T$
3. Show that $\neg \mathrm{P} \wedge \mathrm{P}$ is a tautology.
4. Explain universal quantifier.
5. Define transitive relation. Show whether the relation $R=\{<1,2>,<2,3>,<1,3>,<2,1\rangle\}$ is transitive.
6. Define Boolean algebra.
7. Define minterm.
8. Define partially ordered set.
9. Define subgraph of a graph with an example.
10. Define Euler Graph.
11. Define isolated vertex of a graph. Give an example.
12. Define an m-ary tree.

Section B (Short Answer Essay Questions)

Answer at least five questions.
Each question carries 5 marks.
All questions can be attended.
Overall Ceiling 25.
13. Prove distributive law in logic using truth table.
14. Show that $\mathrm{P} \longrightarrow(\mathrm{Q} \longrightarrow \mathrm{R}) \Leftrightarrow(\mathrm{P} \wedge \mathrm{Q}) \longrightarrow \mathrm{R}$ using laws of logic.
15. Let $\mathrm{X}=\{1,2,3,4\}$ If $\mathrm{R}=\{\langle x, y\rangle / x\rangle y, x \& y \in \mathrm{X}\}$.
(a) Write the elements of R and its matrix.
(b) Draw the digraph represents the relation.
16. Define equivalence class. Also write the equivalence classes modulo 3 generated by the elements of Z.
17. Show that the $<P(X), \subseteq>$ is a a partially ordered set, where X is any set and $P(X)$ is the power set of A.
18. Define isomorphism between two graphs. Show that the following graphs are isomorphic.

19. Show that in a complete binary tree the total number of edges is given by $2\left(n_{\mathrm{i}}-1\right)$. Where n_{i} is the number of terminal nodes.

Section C (Essay Type Questions)

Answer any one question.
The question carries 11 marks.
20. Explain relation on a set. Also explain different types of relation on a set. Give examples for each relation.
21. (a) Explain Travelling Salesman Problem.
(b) Explain Breadth-first search algorithm for spanning tree.

