D 31785	(Pages : 2)	Name
		Reg No

THIRD SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Chemistry, Industrial Chemistry, Polymer Chemistry

CHE 3B 03—PHYSICAL CHEMISTRY—I

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answers)

Answer questions up to 20 marks. Each question carries 2 marks.

- 1. Calculate the temperature at which RMS velocity of O_2 equals that of H_2 at 27 K.
- 2. The molecular diameter of He is 0.22 nm. Calculate mean free path of it at 10^{-6} torr and 298K. $(k = 1.38 \times 10^{-23})$. JK⁻¹molecule⁻¹.
- 3. State first law of thermodynamics. Give its mathematical formulation.
- 4. State and illustrate Hess's law.
- 5. State Le chateleirs principle with example.
- 6. What are the characteristics of chemical equillibrium.
- 7. Write Vant-Hoff's equation.
- 8. Explain K_c in terms of K_p explain terms.
- 9. Define symmetry elements and symmetry operation.
- 10. What is meant by point group?
- 11. Give a single operation equivalent to combined operation σ_{xz} and σ_{yz} .
- 12. Define principal axis.

(Ceiling of marks: 20)

Turn over

2 D 31785

Section B (Paragraph)

Answer questions up to 30 marks. Each question carries 5 marks.

- 13. Write notes on critical phenomena.
- 14. Calculate T_c , P_c and V_c for a gas whose a = 6.49 atm $L^2 \, \text{mol}^{-2}$ and $b = 0.0562 \, \text{L mol}^{-1}$.
- 15. Define enthalpy of formation. Calculate the enthalpy of formation of N₂O5 from following data: $2\mathrm{NO_g} + \mathrm{O_{2g}} \rightarrow 2\mathrm{NO_{2g}} \ \Delta \mathrm{H}^\circ = -114.0 \ \mathrm{KJ}, \ 4\mathrm{NO_{2g}} + \mathrm{O_{2g}} \rightarrow 2\mathrm{N_2O_{5g}} \ \Delta \mathrm{H}^\circ = -102.6 \ \mathrm{KJ}, \ \mathrm{N_{2g}} + \mathrm{O_{2g}} \\ \rightarrow 2\mathrm{NO_g} \ \Delta \mathrm{H}^\circ = +180.4 \ \mathrm{KJ}.$
- 16. Derive the relation between Cp and Cv.
- 17. State Nernst heat theorem. How is third law of thermodynamics used to find out absolute entropies?
- 18. Derive the relation $\Delta G^{o} = -RT \ln Kp$.
- 19. Give group multiplication table of symmetry operations of $\rm H_2O$ molecule.

(Ceiling of marks: 30)

Section C (Essay)

Answer any **one** questions. Each question carries 10 marks.

- 20. (a) Calculate enthalpy of combustion of $\rm H_2S$ from following data $^{\circ}\Delta H_{f\,(\rm H_2S,g)}$ = 20.1 KJ mol $^{-1}$ $^{\circ}\Delta H_{f\,(\rm SO_2,\,g)}$ = - 296.9 KJ mol $^{-1}$ and $^{\circ}\Delta H_{f\,(\rm H_2O,\,\it l)}$ = - 285.84 KJmol $^{-1}$.
 - (b) Calculate the entropy change in evaporation of 1 mole of water at 100° C. Heat of vapourisation of water at 100° C is 2259.4 Jg⁻¹.
- 21. (a) What is chemical potential? Derive Gibbs-Duhem equation.
 - (b) Explain the concept of residual entropy.

 $(1 \times 10 = 10 \text{ marks})$