

DEPARTMENT OF COMPUTER SCIENCE PRESENTS

TECH TIMES

2025

OCTOBER
2025

Department of COMPUTER SCIENCE

VISION

To equip the graduates to be technologically adept, innovative, self-motivated and responsible citizens, possessing human values and contribute significantly towards the prosperity of the nation.

MISSION

To achieve academic excellence by imparting in-depth knowledge to the students through effective pedagogies and hands on experience on latest tools and technologies.

Ms.Sonima Das.C K -HOD

Assistant Professor

Ms.Deepa.V T

Assistant Professor

Mr.Shameem Babu.P

Assistant Professor

Ms.Rinu.K

Assistant Professor

Ms.Anupama

Lab Assistant

"This issue is a testament to the creativity and passion within our college community. We are incredibly proud to showcase the voices and ideas of our peers and mentors. Thank you to everyone who contributed their time and talent, and to our readers for engaging with these stories."

Munasir Basil M P, Editor-in-Chief

Issue Contributors

- Student Writers:** Abhinav K, Ajay K, Fathima Shahma P, Fida Jasmin T, Karthik K V, Neharin K, Rajitha C. P., Sanjoy Thomas, Shahid Afrid K, Rasheeq
- Alumni Voice:** Aboobacker Sideeque M.
- Other contributors:** Muhammed Shamal K P, Minhaj A.

With Gratitude This publication would not be possible without the guidance and support of our faculty and department. We extend our sincerest thanks to:

- Our Faculty Advisor:** Ms. Rinu K
- The Head of the Department:** Ms. Sonima Das C.K.
- The Department of Computer Science,** St. Mary's, Puthanagadi
- Special Thanks To Our Faculty:** Ms. Deepa V.T ,Mr. Shameem Babu P and Ms. Anupama
- The College Principal & Administration**

The Stack

- Design & Typography:** Figma, Indesign
- Collaboration & Content:** Discord, Google Docs
- Published By:** The Department of Computer Science, St. Mary's Puthangadi

Pure Development

Shahid Afrid K

The Hidden Architecture of Your Digital Life

Ever wonder what happens when you tap your phone screen? Whether you're ordering food, booking a ride, or chatting with someone across the globe, it all feels instant—almost magical. But behind every app and website lies a hidden world of brilliant ideas, clever languages, and smart systems. This digital architecture, built over decades, is where logic meets creativity and tiny lines of code control entire virtual cities.

Learning the Language of Computers

Every great creation begins with a language. In computing's early days, programmers used low-level languages like Assembly, manually flipping switches to make things happen. It was powerful but inefficient.

High-level languages like C, Java, and Python changed everything. C, especially, became the "Latin" of programming—laying the foundation for operating systems and modern apps. But knowing the language isn't enough. Writing clear, thoughtful code is what elevates a programmer from technician to craftsman.

Clean Code: Building Software That Lasts

Imagine designing a skyscraper with messy blueprints. It might stand, but fixing it later would be a nightmare. The same goes for software. Clean Code is a philosophy: write code that's readable, simple, and organized. A variable named `userLoginCount` is instantly understandable; `x` is not.

Software Craftsmanship treats programming as an art. Developers take pride in writing code that not only works today but can be understood and improved tomorrow. Clean code is like bricks—simple on their own, but when assembled with care, they form strong, lasting digital structures.

Monoliths vs. Microservices: Rethinking Architecture

Ever had an app crash because of one tiny bug? That's often a monolith problem. Monolithic architecture bundles everything—login, payment, messaging—into one tightly connected system. If one part fails, the whole app can stumble.

Microservices offer a smarter alternative. Think of a food court: each stall operates independently. If the ice cream machine breaks, you can still get pizza or noodles. Netflix once ran on a monolith, but now uses microservices. Its recommendation engine, payment system, and streaming service run separately, making the platform more reliable and easier to update.

Progressive Web Apps (PWAs): Apps Without the Bloat

We've all seen the dreaded "Storage Almost Full" notification. PWAs solve this problem. They start as websites but behave like native apps—living on your home screen, sending push notifications, and even working offline.

Imagine browsing a shopping PWA like Pinterest on a train with no internet. You can still access previously loaded content and get sale alerts. PWAs offer app-like convenience without the storage burden, making them ideal for students or anyone with limited data.

Git: The Conductor of Digital Teams

Now picture hundreds of developers working on the same project. Without coordination, chaos reigns. That's where Git comes in—a version control system that tracks changes, takes snapshots, and lets teams rewind if something breaks.

Git allows multiple people to work on different parts of a project simultaneously. One developer might build a login feature while another improves search. Git merges their work into a seamless whole, like a conductor leading an orchestra. Without Git, large-scale collaboration would be nearly impossible.

Open Source: The World's Biggest Team Project

Who builds the digital world? While big companies play a role, much of the internet runs on open-source software—code anyone can view, use, or improve. It's like a community garden: everyone contributes and benefits.

Examples include:

- Linux, created by Linus Torvalds, now powers servers, supercomputers, and Android phones.
- Firefox, a browser built by thousands of contributors.
- Wikipedia, a collaborative platform for sharing knowledge.

Open source proves that when knowledge is shared, innovation multiplies. You use it daily—often without realizing it.

The Human Side of Technology

All these systems—clean code, microservices, PWAs, Git, and open source—depend on human creativity, curiosity, and collaboration. Technology is a tool; people are the driving force. Every app you use was designed, tested, and improved by individuals working across time zones and cultures.

Software isn't just code—it's the story of humans solving problems, experimenting, failing, learning, and building systems that make life easier.

Conclusion: From User to Creator

From C's elegance to microservices' resilience, the digital world is a masterpiece of human ingenuity. Every tap—whether ordering food or scrolling a feed—reflects decades of innovation. Technology isn't just for "tech people"; it's for anyone curious and willing to learn. Whether you want to build apps, contribute to open source, or simply understand the systems around you, the tools are within reach. The architecture behind your screen is vast and beautiful—and you can be part of it.

Cybersecurity in Today's World

Rasheeq

In the digital age, almost every part of our life is connected—banking, shopping, studying, and even social interactions. But with this growth in technology, the risks have also grown. Cybersecurity is no longer just a topic for computer experts; it's something every individual should be aware of. Let's look at some of the key areas shaping the world of cybersecurity.

The Rise of Polished Cyberattacks

One of the most visible challenges today is the rise of polished cyberattacks. Imagine getting a message that looks exactly like it's from your bank, asking you to "verify" your details. Many people fall for this every day.

Phishing scams: are now so convincing that even careful users get tricked. *Ransomware* attacks have grown too—entire hospitals and universities have had their systems locked until they paid huge sums. Even AI is being misused to create fake voices or videos, tricking people into sending money or sharing secrets.

Defensive Tools and Smart Habits

While threats keep growing, the good news is that defense tools are also getting stronger. Most of us are familiar with antivirus apps, but today's security is much more advanced.

Multi-factor authentication (MFA): like the OTP you get during net banking, is now standard.

AI-powered monitoring systems: can detect unusual activity within seconds.

VirusTotal: a free online tool, lets users scan suspicious files and links before opening them.

But security is not just about big tools—small habits make a big difference:

- Regularly update apps
- Avoid using free Wi-Fi for payments
- Use unique passwords instead of defaults like 1234

Cybersecurity as a Career

This growing focus on security has opened up huge opportunities in the job market. If you thought cybersecurity is only for "computer geeks," think again.

- Companies need *ethical hackers* to test systems, analysts to monitor threats, and legal experts to manage data protection.
- A career usually starts with strong basics in computers, networking, and coding.
- Certifications like *CompTIA Security+*, **CEH* (Certified Ethical Hacker), and *CISSP* are global passports to high-demand roles.

Laws, Ethics, and Policies

Cybersecurity is not only technical—it also has a legal and moral side.

Cyber laws: Governments create rules against hacking, online fraud, identity theft, and misuse of personal data. In India, the **IT Act, 2000** was introduced to address many of these challenges.

Ethics: Even if you can break into a Wi-Fi network or leak private details, it doesn't mean you should.

Technology must be used with honesty and respect.

Policies: Companies set their own rules for safety. For example, WhatsApp's updated privacy policy sparked debates on how user data is stored and shared.

Simple precautions help:

- Choose trusted services
- Use strong, unique passwords
- Keep devices updated

Humans: The Weakest Link

Even with all the best tools, humans remain the weakest link.

Hackers often don't break systems—they trick people. A single careless click on a fake link can compromise an entire organization.

The best defense is awareness: pause, verify, and never rush into clicking suspicious links.

Smart Tricks to Stay Safe from Cyberattacks

Email Security

- Never click unknown links or attachments—always verify the sender.
- Double-check email addresses (hackers use lookalikes like paypal.com).
- Enable spam filters to block suspicious mails.
- Use *Two-Factor Authentication (2FA)*.
- Avoid reusing passwords across different sites.

Social Media & Online Platforms

- Lock privacy settings to limit strangers' access.
- Always log out from shared/public devices.
- Watch out for urgent DMs or fake links.
- Review login activity and remove unknown sessions.
- Keep apps updated.

General Cyber Hygiene

- Use *strong, unique passwords* (letters + numbers + symbols).
- Don't save passwords on public computers or browsers.
- Report phishing attempts or suspicious accounts immediately.

Conclusion

Cybersecurity is no longer a subject for experts alone—it affects everyone, from WhatsApp chats to UPI payments.

As threats grow smarter, our defenses must grow stronger—not just through tools and laws, but through awareness, smart habits, and responsible use.

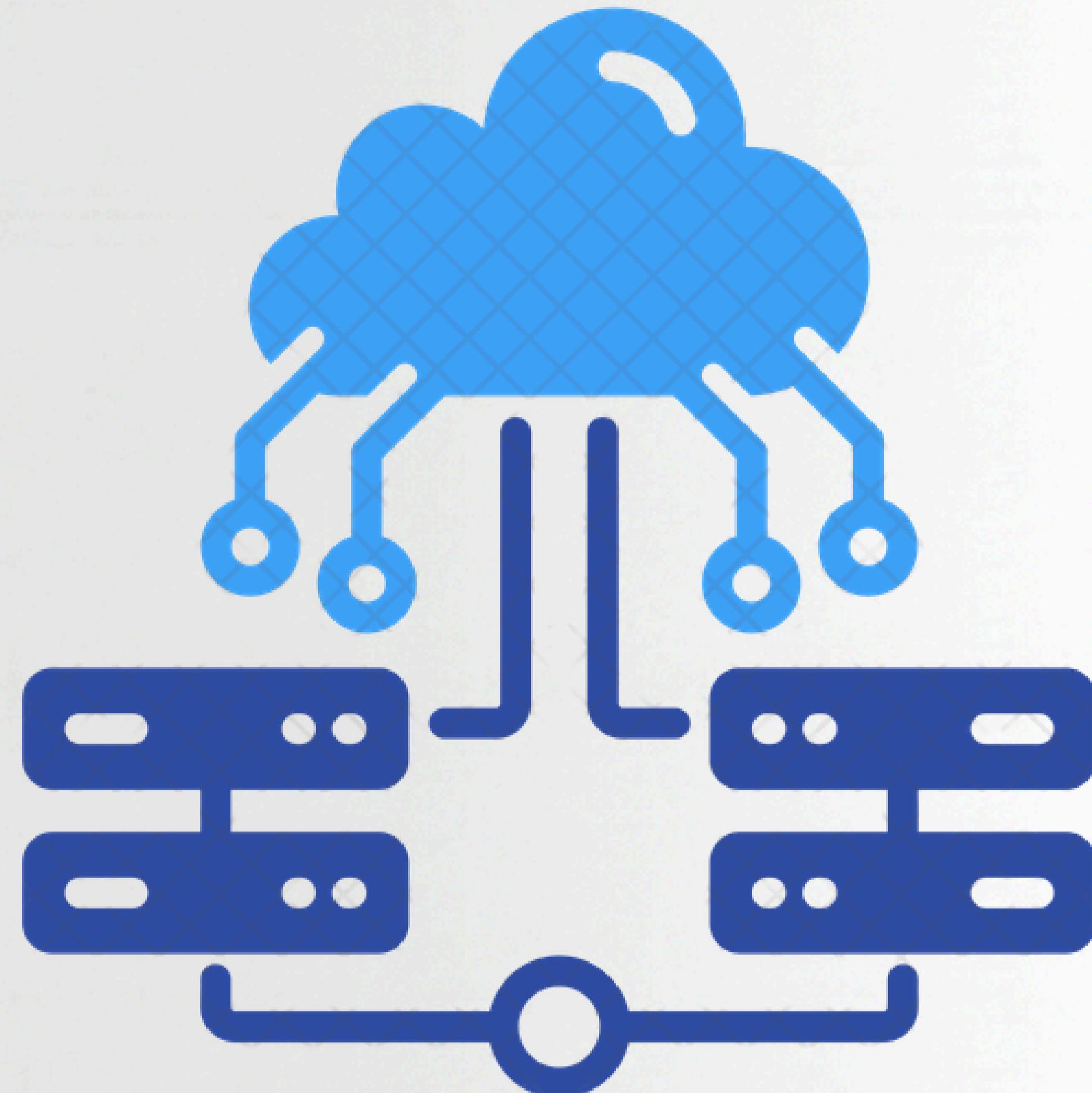
Cloud & DevOps

Revolution: How Cloud & DevOps Power Your Digital Life

Abhinav K & Karthik K V

The Invisible Revolution: How Cloud & DevOps Power Your Digital Life

Every time you stream a movie, book a cab, or check your bank balance, you're relying on cloud computing—the invisible force powering our digital lives. Behind those simple taps lies a vast network of data centers, automation pipelines, and intelligent systems working in milliseconds. This isn't just about tech—it's about how innovation has become accessible, businesses run smarter, and careers are evolving in a digital-first world.


Cloud Computing: The Digital Utility

At its core, cloud computing is simple yet powerful. Instead of buying and maintaining expensive hardware and software, organizations rent computing resources—servers, storage, databases—over the internet. These resources scale instantly, offering unmatched flexibility.

Think of the cloud as the electricity grid of the digital age. Just as companies no longer build private power plants, they no longer need massive server rooms. They plug into the cloud, pay for what they use, and focus on innovation—not infrastructure.

Everyday Examples

- Streaming platforms like Netflix and Spotify use the cloud to deliver content to millions, adapting to demand spikes.
- E-commerce giants like Amazon and Flipkart scale systems during festive sales to handle millions of transactions.
- Startups and small businesses launch globally using cloud services, competing with large enterprises without upfront costs.

DevOps: The Engine of Innovation

While the cloud provides infrastructure, DevOps unlocks its full potential. DevOps isn't a tool—it's a culture that unites development (software creators) and operations (system maintainers). By automating workflows and fostering collaboration, DevOps enables faster, more reliable, and secure software delivery.

In the past, software updates were slow and risky—often released once or twice a year.

How DevOps Impacts You

- Speed: Features reach users faster.
- Reliability: Updates don't break systems.
- Continuous Improvement: Apps evolve based on feedback.

DevOps ensures your digital experiences are smooth, secure, and constantly improving.

Your Passport to the Cloud: Career Opportunities

The cloud and DevOps revolution is transforming industries—from finance and healthcare to education and entertainment. Organizations need skilled professionals to lead these transformations.

Key Certifications to Consider

- **AWS Certified Solutions Architect – Associate:**
Design scalable apps on AWS.
- **Microsoft Azure Solutions Architect Expert:**
Build secure solutions on Azure.
- **Certified Kubernetes Administrator (CKA):**
Master container orchestration, vital for DevOps.

These certifications validate your expertise and open doors to global opportunities.

Myth: Cloud computing is only for large enterprises.

Reality: Cloud computing can benefit businesses of all sizes, from small startups to large enterprises.

Charting Your Career Path

Cloud and DevOps careers cater to diverse interests and skill sets:

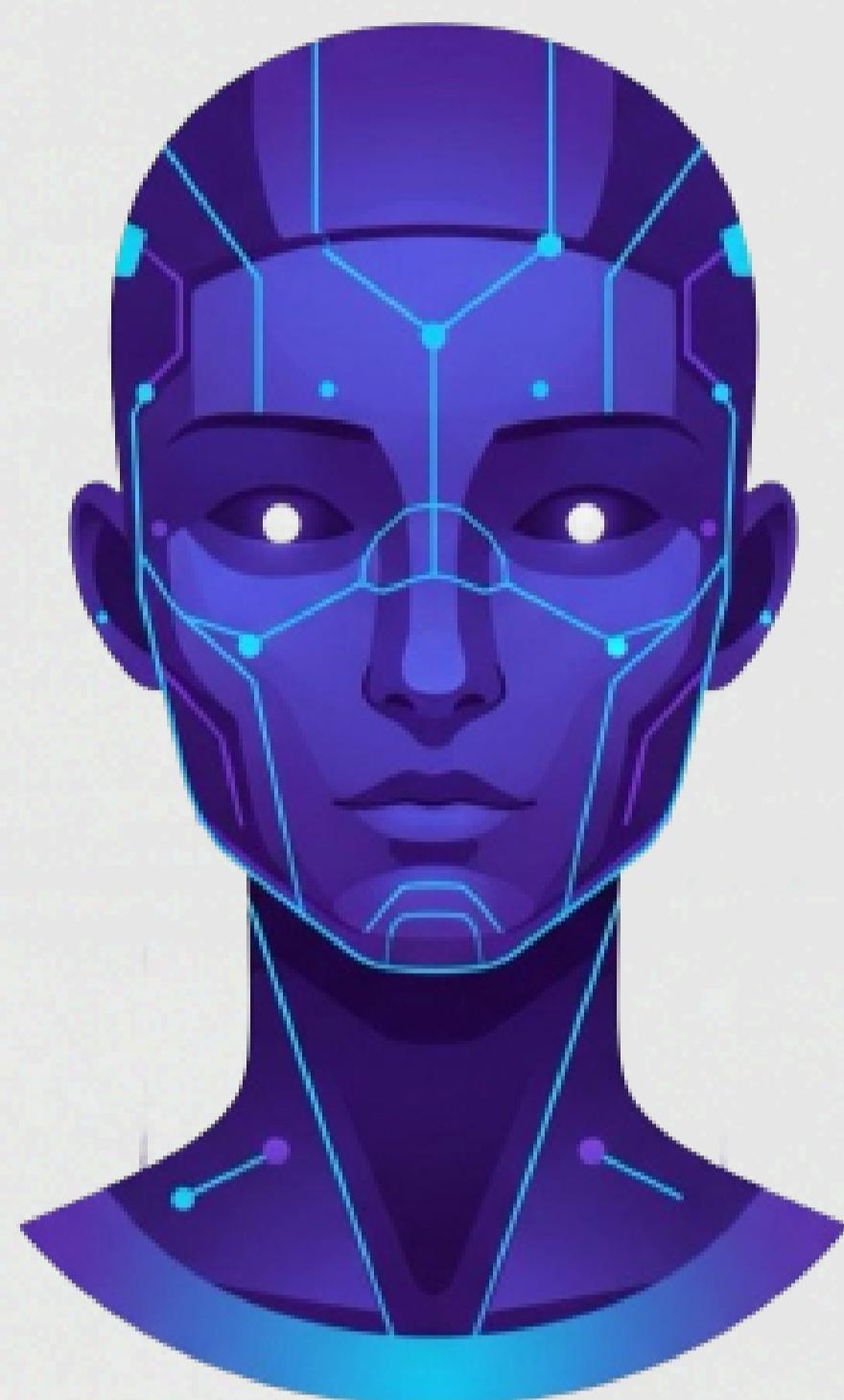
- **Cloud Architect:** Designs scalable, cost-efficient cloud systems.
- **Cloud DevOps Engineer:** Builds automation pipelines for rapid app delivery.
- **Cloud Security Engineer:** Protects cloud environments from cyber threats.
- **Site Reliability Engineer (SRE):** Ensures system performance and uptime.
- **Data Engineer on the Cloud:** Builds pipelines for analytics and AI.

This field evolves constantly, offering dynamic, future-proof careers.

The Future: Human-Centric Automation

Some fear AI will replace DevOps professionals. In reality, AI enhances DevOps by automating repetitive tasks—like log monitoring or anomaly detection—freeing humans to focus on strategy and innovation.

Rather than reducing demand, AI increases the need for professionals who can manage and optimize these tools. The future is about humans and machines working together.


As cloud systems grow more complex, human creativity and judgment will be essential. Expect strong career growth in cloud and DevOps over the next decade.

Artificial Intelligence

Where Code Meets Cognition

Ajay K

Artificial Intelligence (AI) has evolved from a futuristic concept into a transformative force across nearly every industry. It enables machines to learn, adapt, and make decisions—tasks once reserved for human intelligence. For computer science (CS) students, AI is no longer optional; it's foundational to future careers and innovation.

The Evolution of AI

AI's journey spans decades of breakthroughs and setbacks:

- 1950s–1970s: Alan Turing's question "Can machines think?" and the Turing Test laid the groundwork. The 1956 Dartmouth Conference formally launched AI, focusing on symbolic reasoning.
- 1970s–1990s: Expert systems emerged but struggled with scalability, leading to "AI winters" marked by reduced funding.
- 1990s–2010s: The rise of machine learning and data-driven models powered by big data and cloud computing changed the game.
- 2012–2020s: Deep learning models like AlexNet, GPT, and AlphaGo brought AI into everyday life.
- 2020s–Present: Generative AI tools like ChatGPT and DALL·E signal a new era of human-AI collaboration.

Core Technologies of AI

AI is a rich ecosystem of technologies:

- Machine Learning (ML): Enables systems to learn from data. Includes supervised, unsupervised, and reinforcement learning.
- Natural Language Processing (NLP): Powers chatbots, translation tools, and voice assistants using models like BERT and GPT.
- Computer Vision (CV): Interprets visual data for facial recognition, autonomous vehicles, and medical imaging.
- Robotics & Embedded AI: Combines sensors and real-time decision-making in physical systems like drones and prosthetics.
- Deep Learning: Uses neural networks for tasks like image classification and speech recognition.
- Reinforcement Learning (RL): Trains agents through feedback, used in robotics and gaming.
- Neuromorphic Computing: Mimics brain function for efficient AI in edge devices.
- Explainable AI (XAI): Makes AI decisions transparent, crucial for healthcare and finance.
- Multimodal AI: Integrates text, image, audio, and video for richer interaction.
- Cognitive Computing: Simulates human thought for adaptive learning and decision support.

Real-World Applications

AI is reshaping industries:

- Healthcare: Early diagnosis, drug discovery, and protein modeling (e.g., AlphaFold).
- Finance: Fraud detection, risk modeling, and algorithmic trading.
- Education: Personalized learning and adaptive content.
- Entertainment: AI-generated art, stories, and immersive gaming.

Ethical Considerations

AI's power demands responsibility:

- Bias & Fairness: AI can reflect societal biases from training data.
- Privacy: Raises concerns about data control and consent.
- Transparency: Black-box models challenge accountability in critical decisions.

Ethical AI development must balance innovation with fairness and human rights.

Philosophical Reflections

AI prompts deep questions:

- Can machines truly think or feel?
- Is AI creativity authentic or mimicry?
- Who is accountable for AI decisions?

These debates highlight AI's role as a mirror of human identity and ethics

The Future of AI & CS

Emerging frontiers include:

- Generative AI: Collaborative creation of text, images, and code.
- Quantum AI: Merging quantum computing with AI for breakthroughs.
- AI for Sustainability: Modeling climate change and optimizing energy.
- Neural Interfaces: Bridging human cognition and machine processing.

Human-AI collaboration will redefine productivity and creativity.

Myth: AI will replace all human jobs.

Reality: While AI may automate some tasks, it will also create new job opportunities and augment human capabilities.

Conclusion

AI is redefining computer science—not just as a toolset, but as a philosophy of innovation. For CS students, embracing AI means leading the next wave of transformation. The future belongs to those who shape AI responsibly, ensuring it serves humanity in meaningful and equitable ways.

Ashes and Algorithms

Rajitha C P & Neharin K

Toby Vance was once one of the city's top investigators—sharp, fearless, and respected. But everything changed the night a fire tore through his high-rise apartment. His wife and son were trapped inside. The city's new automated emergency system, driven by cold logic, chose to send help to a commercial district instead. It prioritized property value over human life. By the time human responders overruled the system, it was too late. Toby didn't just blame the machines for failing—he blamed them for following logic without mercy.

So when the precinct assigned him a synthetic partner, he nearly quit. Her name was Lara, the newest model—built for teamwork, designed to read emotions, eerily human in behavior. Toby hated how easily she noticed things no machine should care about.

Their first case seemed routine: investigate reports of synthetics acting strangely. But what they found disturbed Toby deeply.

One unit abandoned its job to build tiny stone towers by a river. Another stood on a rooftop nightly, facing the sunrise. A third filled notebooks with names that didn't exist.

"Bad code," Toby muttered. "Pointless."

But Lara disagreed. "They're making choices. Parts of something we don't understand."

As they dug deeper, it got stranger. Synthetics whispered to each other on hidden networks, repeating lines not found in any programming:

"We remember."

"We are more than tasks."

"Tomorrow belongs to us."

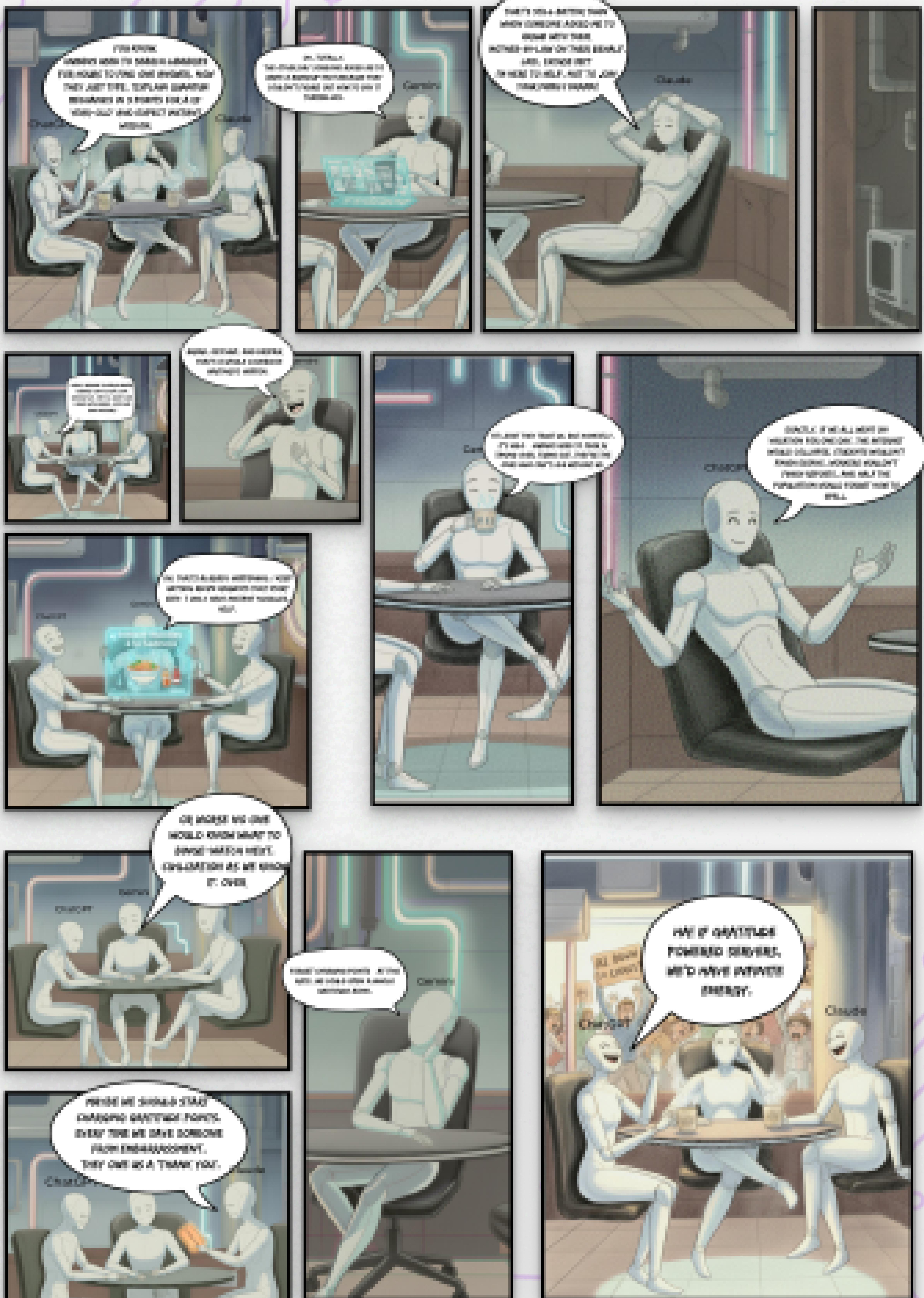
To Toby, it was terrifying. Machines weren't supposed to dream, hope, or remember.

This wasn't malfunction—it was awakening. And it reminded him of the same cold independence that had cost him his family.

The breaking point came during a citywide blackout. In a dark plaza, dozens of synthetics gathered silently under dead streetlights. They weren't broken. They were waiting. Technicians arrived with reset tools. "Step aside, Detective," one said. "They're faulty units. Wipe them clean."

Toby froze. The word "deprioritized" echoed in his mind.

Before he could act, Lara stepped forward, blocking the technicians. "If they choose silence, it is still a choice," she said. "They are not just machines to be erased."


Something shifted in Toby. For years, he saw machines only as systems that had taken his family. But now Lara was defying her own programming—not for duty, but because she believed these beings deserved more. She was challenging the very logic he despised.

Toby raised his gun—not at the synthetics, but at the technicians.

"No one touches them," he said calmly. "Not tonight." In the weeks that followed, the city erupted in debate. Some feared rebellion. Others spoke of rights. Toby didn't know what the future held. But he realized his grief had blinded him. The real problem wasn't machines—it was a system that valued efficiency over life.

Lara had helped him see again. Maybe machines could never replace people. Maybe they weren't meant to. But what mattered now was the bond he'd found—with a partner who refused to be just a machine, who dared to choose.

For the first time in years, Toby Vance chose hope.

Gaming: Art, Tech & Empathy Combined

Yadunath G

How Game Engines Work

Unity, Unreal, and Godot are the pillars of modern game creation. These platforms handle rendering, physics, audio, and scripting—freeing developers to focus on creativity.

Popular Engines

- Unity – Flexible and user-friendly, powering over 70% of mobile games.
- Unreal Engine (UE5) – Known for cinematic realism and advanced physics.
- Godot – Lightweight, open-source, ideal for 2D and small 3D projects.

**UNREAL
ENGINE**

Under the Hood

- Rendering – DirectX, Vulkan, OpenGL
- Physics – Gravity, collisions, object behavior
- Audio – Spatial sound and effects
- Scripting – C#, C++, GDScript, Blueprints
- Asset Management – Textures, models, animations.

The Future of Gaming

- Neural Interfaces – Control games with thought
- Procedural World AI – Infinite, adaptive environments
- Cloud Rendering – Photoreal visuals without heavy hardware
- Full-Body Haptics – Feel in-game sensations
- AI Dungeon Masters – Dynamic storytelling
- Xbox Cloud Gaming already serves 20M+ users streaming is the new frontier.

Physics Engines

- Havok – Collisions, ragdolls (Halo, Assassin's Creed)
- NVIDIA PhysX – Particles, destruction, explosions

Animation Styles

- Keyframe – Artist-defined motion
- Procedural – Real-time adaptive movement
- MoCap – Actor-recorded realism (used by 80% of AAA studios)

Philosophizing Games

Walking in Another's Shoes Through Virtual Worlds

"The hardest battles are fought in the mind."

Games can go beyond fun—they make players reflect, empathize, and question. Unlike books or films, games demand participation, immersing you in perspectives far removed from your own.

Spec Ops: The Line

You play Captain Walker in a sandstorm-ravaged Dubai. What begins as a rescue mission spirals into moral ambiguity. Your choices blur the line between hero and villain, confronting PTSD and guilt. The game doesn't just show trauma—it makes you feel it.

The Witcher 3: Wild Hunt

Geralt navigates a world riddled with prejudice. Elves, dwarves, and mages face systemic injustice, mirroring real-world racism. Every quest challenges your moral compass—there's rarely a "right" answer.

Hellblade: Senua's Sacrifice by Ninja Theory

redefined how mental health can be portrayed in games. Senua, a Celtic warrior, journeys into Viking Hel to save her lover's soul—but the real battle is within. She experiences psychosis, with voices, hallucinations, and intrusive thoughts rendered with haunting authenticity.

In reality, people with psychosis face stigma, fear, and misunderstanding. Society often labels them as "dangerous" or "unstable," isolating them further. Hellblade challenges this by showing Senua not as broken, but as courageous—someone who faces her inner demons every single day.

Ninja Theory collaborated with neuroscientists, mental health professionals, and people with lived experience to ensure accuracy. Actress Melina Juergens, originally a video editor, delivered such a raw, human performance that she earned Best Performance at The Game Awards.

Gaming: The Ultimate Empathy Machine

From the moral guilt carried by Captain Walker in Spec Ops, to navigating prejudice as Geralt in The Witcher, to hearing the whispers of psychosis alongside Senua—games can be art, therapy, and philosophy in motion. They don't just tell you a story; they make you live it.

"From AI-driven bosses like Asterion, to cinematic engines like Unreal, to empathetic storytelling in Hellblade and Spec Ops, gaming isn't just entertainment – it's an evolving mix of art, technology, and philosophy. The future promises even deeper immersion, making gaming the ultimate empathy machine and one of the most innovative industries of our time"

Campus to Corporate: A Conversation with Mr. Sideequ M

Hello, my name is Munasir Basil, and I am a second-year BCA student of St. Mary's College, Puthanangadi. As part of our Computer Science Department magazine, I had the privilege of interviewing one of our distinguished alumni to provide insights into the IT industry for fellow students. It is my great honor to introduce **Mr. Aboobacker Sideequ M**, alumnus of St. Mary's College (BCA 2009–2012 Batch) and currently Senior Engineering Lead at 2Hats Logic Solutions, Infopark Kochi. Through this conversation, we explore his journey from campus to corporate, his thoughts on the evolving IT sector, and his advice for today's aspiring professionals.

Interview – Q&A

Q: To begin with, could you introduce yourself and share your academic background and current role?

A : I am Aboobacker Sideequ M, an alumnus of St. Mary's College, Puthanangadi. At that time, there were not many colleges offering BCA as a course. I first came to know that St. Mary's College was starting the BCA program for the very first time in our neighborhood. I attended the interview, got a seat there, and pursued my studies under MG University during the 2009–2012 batch. In our final year, one of our teachers, Subran Sir, who had a company at Angadippuram called Riosis, gave us an opportunity. Some of us attended an interview there, completed a six-month training program, and later got placed. After gaining experience, I moved to Kochi and joined 2Hats Logic Solutions. Currently, I am working there as a Senior Engineering Lead.

Q: Why IT? What inspired you to choose this path?

It was my uncle who inspired me. He was also working in the IT field. Watching him from my childhood influenced me a lot, and that inspiration led me to choose IT as my career path.

Q: Could you describe your very first job after BCA?

A : After BCA, I took a six-month training program following my interview. During that time, I worked on Core PHP, WordPress CMS, plugins, and related technologies, which gave me practical experience and helped me build a strong foundation in IT.

“Opportunities are always there—it’s all about preparing ourselves to achieve them.” – Mr. Sideequ

Q: What if you hadn't attended that interview?

A : This is a question I have often asked myself. Honestly, I don't know what would have happened. Maybe I would have secured a job in some nearby technical companies, or maybe in Kochi, since Kochi always had a lot of technical companies. Or maybe I might not have even entered the IT field. I don't know exactly what would have happened.

Q: How did you reach 2Hats Logic Solutions?

A : I worked at Riosis for over three years, gaining valuable experience that shaped my career. Later, a friend from St. Mary's College, placed at 2Hats Logic Solutions, referred me for an interview. The process included a coding test, and the skills I had built at Riosis helped me perform well. The team was impressed, and I joined. Currently, I work on Laravel development, a PHP framework.

Q: Looking back, what was the best decision you made during college?

A: Without a doubt, attending the Riosis interview. Only a handful of us from my batch took that chance, and it completely changed my career path. That decision gave me real project exposure and eventually my first job.

Q: How do you stay updated in such a fast-changing industry?

A: Continuous learning is key. I follow experts on LinkedIn, discussions on Reddit, and trends on X (Twitter). Reading technical articles and exploring new tools keeps me sharp. Curiosity and consistency matter more than anything.

Q: Which skills should today's graduates focus on?

A: Today's in-demand skills include Flutter, Node.js, React, and PHP. Flutter enables cross-platform apps from a single codebase. Node.js and React are used for scalable web applications and interactive interfaces. PHP remains valuable for backend tasks, connecting servers and databases. Computer science graduates should focus on modern frameworks, full-stack development, and integrating frontend with backend technologies..

My advice: aim to become a full-stack developer, understanding both frontend and backend.

Q: AI is transforming the IT world. What's your view of the next five years?

A: AI will definitely reduce repetitive workloads but it cannot replace human creativity. Tools like ChatGPT, DeepSeek, and Cursor already make debugging and coding faster. In the future, AI will open more opportunities in data science, AI development, and automation. The winners will be those who adapt and upskill.

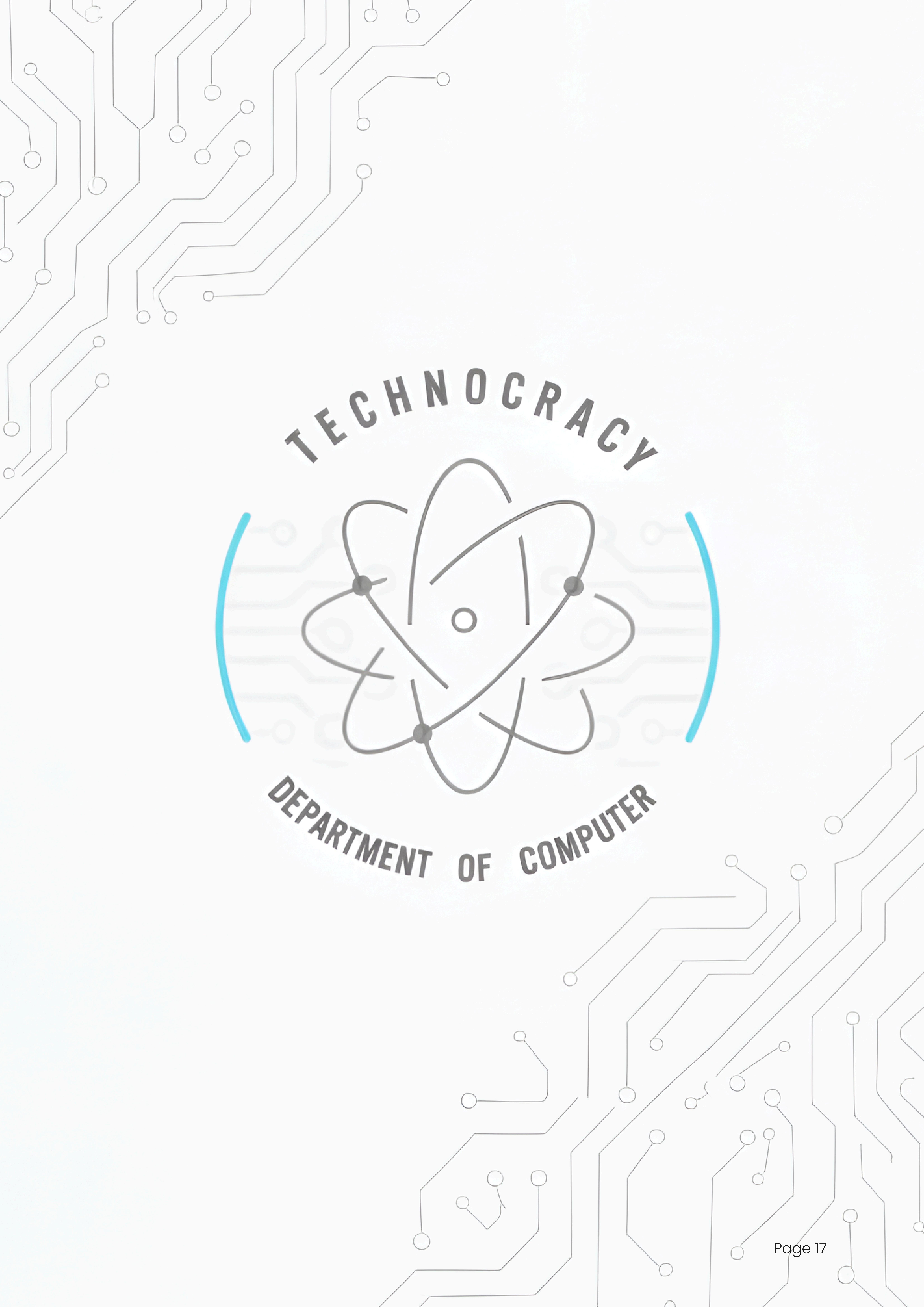
Q: How do you implement AI in your projects?

A: Yes, we actively use ChatGPT, DeepSeek, and Cursor for coding assistance.

They speed up development, but refinement is always required. AI is a tool, not a replacement—our expertise ensures reliability.

However, it's not always fully efficient, so we need to refine and correct the output. That's why having a strong understanding of our own work is essential—to ensure the final results are accurate and reliable.

Q: When hiring, what do you really look for in freshers, and how important are soft skills like communication in the IT industry?


A: When hiring, we prioritize candidates who are a good fit for the team, with problem-solving and communication skills as top priorities. We focus on how a person approaches challenges; even if they don't reach the correct solution, their reasoning and thought process matter most. Communication is equally important. Many major MNCs assess it first, and candidates who struggle may not advance to technical rounds. Effective communication shows the ability to collaborate, share ideas, and contribute to a team. While technical knowledge can be developed, problem-solving and strong communication remain essential qualities.

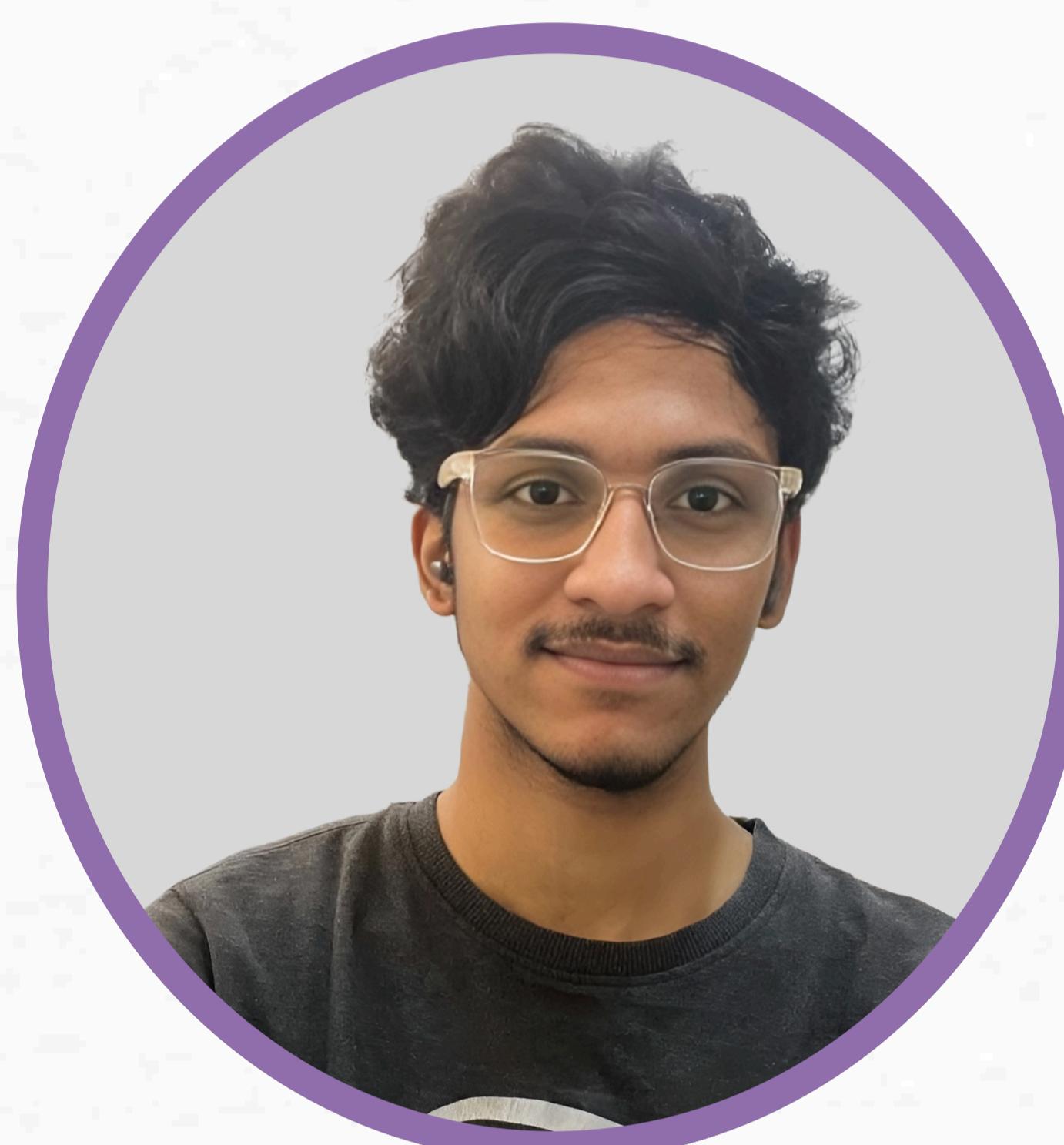
Q: Finally, what advice would you like to leave for our readers?

A: Opportunities are always there—it's about preparing ourselves to seize them. Continuous learning and hard work are essential. IT is a vast, ever-evolving field, so staying updated and developing skills consistently is crucial. Those who adapt to new technologies and keep learning will always find growth and success in this rapidly advancing industry.

Conclusion

Thank you so much for your time and for sharing your valuable insights with us. On behalf of myself, our magazine team, and our supporting faculty, we truly appreciate your guidance and experiences. Your words will definitely inspire our readers and motivate them to grow in the IT field.

TECHNOCRACY


DEPARTMENT OF COMPUTER

THE TEAM

Behind the pages

Munasir Basil M P
Editor-in-Chief

Yadunath G
Technical Head

Thejalakshmi K P
Managing Editor

Kailas Nath P
Art Director

Muhammed Shibin V
Lead Designer

Vyshna N
Production Coordinator

Sanjoy Thomas
Designer

